Know how to use Know-how

Data Integration using Semantic Technology: A use case

Jürgen Angele, ontoprise
Michael Gesmann, Software AG
Software AG’s
Information Integrator
Kinds of Integration Problems

It is generally estimated that for each $1 spent for an application, companies spend on average $5 to $9 for the integration.

What is the problem of information integration?

• **structural heterogeneity** – different application systems store their data in different structures

• **semantic heterogeneity** – intended meaning of information items is different in the various application systems

• **inconsistency and redundancy problems** – data in different application systems might be partially inconsistent or redundant
Ontology

- Representation Language: F-Logic, WRL
- standards: RDF, OWL
Mapping an Ontology with Data

- Mapping to Databases, Webservices, Search Engines
- Mapping to Ontologies
Concept

views

business ontology

manual mappings

data source ontologies

automatical mappings

data sources
Information Integrator Studio / Semantic Server

Studio

Semantic Server

- Web Service
- Inference Server
- DIG
- F-Logic
- OWL
- Rewriter
- Built-Ins
 - Textual analyses
 - Mathematical Operators
 - String Operators
 - Other Operators
- Inference Kernel
- Connectors
- Internal Database (EDB)

Built-Ins

Connectors

- Internal Database (EDB)
Concept

- Business ontology
- Data source ontologies
- Automatical mappings
- Data sources
FORALL VAR1, VAR2, VAR3, VAR4, VAR5, VAR6, VAR7, VAR8

c(authors_1347752484,VAR1):authors
[authors_au_id->>VAR1;authors_au_lname->>VAR2.....]

<- dbaccessuser("\"dbo\".\"authors\"", F("au_id", VAR1, "au_lname", VAR2,...), "mssqlserver2000","pubs","localhost:1433","sa","").
Concept

business ontology
manual mappings
data source ontologies
automatical mappings
data sources
Mapping Rules

FORALL VAR0, VAR1, VAR2, VAR3, VAR4, VAR5, VAR6, VAR7, VAR8

VAR0: Person
 [hasName->>VAR2.....]
 <-
VAR0: authors
 [authors_au_id->>VAR1; authors_au_lname->>VAR2.....] .

FORALL VAR0, VAR1, VAR2, VAR3

VAR0: LaserPrinter [hasResolution->>VAR1; hasPrice->>VAR3;...]
 <-
VAR0: Printer [ptype->>“Laser“; pres->>VAR1; pp->> VAR2]
AND VAR3 is VAR2*1.3.
Concept

views

business ontology

manual mappings

data source ontologies

automatonal mappings

data sources
Runtime Performance

Which is the right evaluation sequence for the rule bodies?

Constraint satisfaction problem:

- avoid table scans
- use key information, unique index information,….

Solution:

- heuristics
- optimizer
Software AG

- located in Darmstadt, Germany
- established in 1969
- about 2800 Employees
- customers in 73 countries
- core businesses:
 - Enterprise transaction systems (data management and processing)
 - crossvision – SOA integration suite
Semantic Integration
Does a customer raising a support issue for a specific project have a valid maintenance contract for that product?

What is a customer’s experience with our products?

- **Adabas**
 - Customer Information System
 - client
 - contact information
 - contract

- **SQL**
 - Support Information System
 - customer
 - contact information
 - support case
Customer Information Gateway – Source ontologies

Class „File151“
property „AA“ type integer
property „AB“ type date
property „AC“ type date
property „AD“ type string
…
Class „File87“
…

Support Information System (SQL)

Table „CUSTOMER“

Table „CASE“

Customer Information System (Adabas)

File 151
Fields „AA“, „AB“, „AC“, „AE“

File 87
Fields „AA“, „AB“, „AC“

Class „CUSTOMER“
property „cid“ type integer
…
Class „CASE“
property „desc“ type string
property „cust“ type integer
property „belongsTo“ type „CUSTOMER“
…
Customer Information Gateway - Mapping

Class Customer
- property id
- property name
- property address

Class SupportRequest
- property id
- property status
- property issuedBy

Class Contract
- property contractId
- property contractEndDate
- property contractor

File 151 -> Contract
- AA -> contractId
- AB -> contractStartDate
- AC -> contractEndDate
- AD -> contractStatus

File 87 -> Client
- ...

Class „File151“
Class „File 87“

Class „CUSTOMER“
Class „CASE“

Adabas

SQL
Customer Information Gateway - Mapping

Class Customer
 property id
 property name
 property address

Class Contract
 property contractId
 property contractEndDate
 property contractor

Class SupportRequest
 property id
 property status
 property issuedBy

Class "File151"
Class "File87"

- Object identity
- Data type transformations
- Encoding of values
- Generation of object references
- Generation of inverse references
- N:M relations
Customer Information Gateway - Queries

For given SupportRequest search for the corresponding Contract

Class Customer
- property id
- property name
- property address

Class SupportRequest
- property id
- property status
- property issuedBy

Class Contract
- property contractId
- property contractEndDate
- property contractor
Customer Information Gateway

For given Customer search for all their SupportRequests

Class Customer
- property id
- property name
- property address

Class Contract
- property contractId
- property contractEnd
- property contractor

Class SupportRequest
- property id
- property status
- property issuedBy
• Avoid full scans on source data
• Exploit data sources’ query capabilities
 • filter predicates (more than one)
 • joins
 • indexes
 • uniqueness
Customer Information Gateway – Summary

- First (simple) use case
- Different data sources
- Mappings and queries
- Beside data integration not many additional rules
- Performance

- Continue work in context of EU projects
 - NEON
 - Semantic Gov
Let‘s pump information we have never seen before from the data!